当前位置: > 能被1、2、3、4、5、6、7、8、9整除的四位数是多少?这个四位数不能是重复的数字...
题目
能被1、2、3、4、5、6、7、8、9整除的四位数是多少?这个四位数不能是重复的数字

提问时间:2020-08-07

答案
7560
这个四位数能被1、2、3、4、5、6、7、8、9整除,则这个四位数必是1、2、3、4、5、6、7、8、9最小公倍数2520的倍数.但2520有重复数字,2520*2=5040,5040仍有重复数字,2520*3=7560,7560无重复数字.2520*4=10080,10080位五位数,舍去.
综上,此四位数仅7560一个.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.