当前位置: > 如何证明,对于任意自然数都有(n+1)^2005+n^2005+(n-1)^2005-3n能够被10整除....
题目
如何证明,对于任意自然数都有(n+1)^2005+n^2005+(n-1)^2005-3n能够被10整除.
谢谢啦!

提问时间:2020-08-07

答案
证明:
因为2005=4*501+1
所以(n+1)^2005的尾数与(n+1)^1相同 即(n+1)^2005的尾数为n+1
n^2005的尾数与n^1相同 即n^2005的尾数为n
(n-1)^2005的尾数与(n-1)^1相同 即(n-1)^2005的尾数为n+1
故(n+1)^2005+n^2005+(n-1)^2005的尾数为n+1+n+n-1=3n
3n-3n=0 即(n+1)^2005+n^2005+(n-1)^2005-3n的尾数为0
故能整除10 命题得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.