当前位置: > 题是在三角形ABC中,∠A=60,△ABC的角平分线BD。CE相交于点O,求证BE+CD=BC。...
题目
题是在三角形ABC中,∠A=60,△ABC的角平分线BD。CE相交于点O,求证BE+CD=BC。

提问时间:2020-08-07

答案
在BC边上取点F,使BF=BE,连结OF.
∵BD是角平分线,∠EBO=∠FBO,BF=BE,BO=BO
∴△BEO≌△BFO,∴∠EOB=∠FOB=∠COD
∵∠A=60°
∠EOB=∠CBO+∠BCO,又BD、CE是角平分线
∴∠EOB=1/2(180°-60°)=60°
则∠COF=180°-∠FOB-∠COD=60°=∠COD
又CE是角平分线,∴∠OCD=∠OCF,CO=CO,
∴△COF≌△COD ,∴CF=CD
∴BC=BF+CF=BE+CD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.