题目
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.
提问时间:2020-08-07
答案
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.
证:
以下记单位矩阵(幺阵)为E.
由已知得
(A-bE)(B-aE)=abE<>0
两边求行列式,均不为零,故det(A-bE)<>0,故A-bE必是可逆阵.
于是上式左乘(A-bE)的逆,右乘A-bE,即得
(B-aE)(A-bE)=abE.
两式展开,比较,立即可得:AB=BA
证:
以下记单位矩阵(幺阵)为E.
由已知得
(A-bE)(B-aE)=abE<>0
两边求行列式,均不为零,故det(A-bE)<>0,故A-bE必是可逆阵.
于是上式左乘(A-bE)的逆,右乘A-bE,即得
(B-aE)(A-bE)=abE.
两式展开,比较,立即可得:AB=BA
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点