当前位置: > lim[m/(1-x^m)-n/(1-x^n)] x趋近于1 m、n为自然数...
题目
lim[m/(1-x^m)-n/(1-x^n)] x趋近于1 m、n为自然数

提问时间:2020-08-07

答案
记1-x^m=(1-x)*F(m-1);1-x^n=(1-x)*F(n-1)
则[m/(1-x^m)-n/(1-x^n)] x=[m/(1-x)*F(m-1)-n/(1-x)*F(n-1)] x
=1/(1-x)[m/F(m-1)-n/F(n-1)]x
=x*(mF(n-1)-nF(m-1))/(1-x)F(m-1)F(n-1)
0/0型可以用罗必塔法则
有:[mF(n-1)-nF(m-1)+x*(mF'(n-1)-nF'(m-1))]/[-F(m-1)F(n-1)+(1-x)(F'(m-1)F(n-1)+F(m-1)F'(n-1))]
代入x=1,有分子化简为mn(n-m)/2;分母:-mn,所以结果是:(m-n)/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.