当前位置: > 试证明关于X的方程(M^2-8M+17)*X^2+2MX+1=0,无论m取何值,该方程都是一元二次方程...
题目
试证明关于X的方程(M^2-8M+17)*X^2+2MX+1=0,无论m取何值,该方程都是一元二次方程

提问时间:2020-08-07

答案
若要证明无论m取何值,该方程都是一元二次方程,即时证明M^2-8M+17永远不等于0.
因为M^2-8M+17=(M-4)^2+1
无论M取何值,(M-4)^2永远大于等于0
所以无论M取何值,(M-4)^2+1永远大于等于1
即无论M取何值,M^2-8M+17永远大于等于1
无论m取何值,该方程都是一元二次方程
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.