题目
证明 根号(11...1[2n个1] - 22...2[n个2]) = 33...3[n个3]
清晰点,最好有[ ]内的内容
清晰点,最好有[ ]内的内容
提问时间:2020-08-07
答案
√(11...1[2n个1]-22...2[n个2])=33...3[n个3]
当n=1时,
左边=√(11...1[2个1]-22...2[1个2])
=√(11-2)
=3
=右边
原式成立;
设n=k时成立,即√(11...1[2k个1]-22...2[k个2])=33...3[k个3]
11...1[2k个1]=33...3[k个3]^2+22...2[k个2]
当n=k+1时,
√(11...1[2k+2个1]-22...2[k+1个2])
=√[(11...1[2k个1]*100+11)-(22...2[k个2]*10+2)]
=√{[(33...3[k个3]^2+22...2[k个2])*100+11]-(22...2[k个2]*10+2)}
=√{10*33...3[k个3]^2+(11...1[k个1]*10-11...1[k个1])*10*2+9}
=√{10*33...3[k个3]^2+2*10*11...1[k个1]*(10-1)+9}
=√{10*33...3[k个3]^2+2*10*9*11...1[k个1]+9}
=√{10*33...3[k个3]^2+2*3*10*33...3[k个3]+9}
=√{10*33...3[k个3]^2+2*3*(10*33...3[k个3])+3^2}
=√{(10*33...3[k个3]+3)^2]
=10*33...3[k个3]+3
=33...3[k+1个3]
所以
√(11...1[2n个1]-22...2[n个2])=33...3[n个3]成立.
证毕.
当n=1时,
左边=√(11...1[2个1]-22...2[1个2])
=√(11-2)
=3
=右边
原式成立;
设n=k时成立,即√(11...1[2k个1]-22...2[k个2])=33...3[k个3]
11...1[2k个1]=33...3[k个3]^2+22...2[k个2]
当n=k+1时,
√(11...1[2k+2个1]-22...2[k+1个2])
=√[(11...1[2k个1]*100+11)-(22...2[k个2]*10+2)]
=√{[(33...3[k个3]^2+22...2[k个2])*100+11]-(22...2[k个2]*10+2)}
=√{10*33...3[k个3]^2+(11...1[k个1]*10-11...1[k个1])*10*2+9}
=√{10*33...3[k个3]^2+2*10*11...1[k个1]*(10-1)+9}
=√{10*33...3[k个3]^2+2*10*9*11...1[k个1]+9}
=√{10*33...3[k个3]^2+2*3*10*33...3[k个3]+9}
=√{10*33...3[k个3]^2+2*3*(10*33...3[k个3])+3^2}
=√{(10*33...3[k个3]+3)^2]
=10*33...3[k个3]+3
=33...3[k+1个3]
所以
√(11...1[2n个1]-22...2[n个2])=33...3[n个3]成立.
证毕.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1a,b,c不全为0 求(ab+2bc)/(a^2+b^2+c^2)的最小值
- 2Books were just words that had very little to do with me,and I was bored by them.的意思
- 3《从百草园到三味书屋》仿写句子 用不必说……也不必说……单是……写校园景色
- 4把20克硝酸钾加入到100克水中,充分溶解,得到的硝酸钾溶液的质量为?
- 5当X趋于0时,sin(1/x)/x极限是否存在,若存在,是多少?为什么?
- 6More than one man have seen that dog改错,请说明理由,
- 7听完一首歌的感受 作文300字
- 8The person concerned wanted this matter settled immediately.
- 9关于镜面发射与漫反射
- 10墙上用钉子挂东西,且有向外拉扯钉子的一个物理力,钉子容易松动吗?