题目
【高一数学】定义域为(-1,1)上的奇函数f(X),当x∈(0,1)时,f(x)=(2^x)÷(1+4^x)
①、求f(x)的解析式
②、判断并证明f(x)在其定义域上的单调性
③、当m为何值时,方程f(x)=m在(0,1)上有解
①、求f(x)的解析式
②、判断并证明f(x)在其定义域上的单调性
③、当m为何值时,方程f(x)=m在(0,1)上有解
提问时间:2020-08-05
答案
1)因为是奇函数,所以f(0)=0,-1<x<0时,0<-x<1,所以f(-x)=(2^(-x))/(1+4^(-x))=(2^x)/(1+4^x) 因为f(-x)=-f(x),所以,f(x)=-(2^x)/(1+4^x) ,
综上所述,f(x)=-(2^x)/(1+4^x) -1<x<0
(2^x)/(1+4^x) 0<x<1
0 x=0
2)单调递减
因为是奇函数,所以只需要证明一边,设0<a<b<1,则,f(a)-f(b)=(2^a+2^a*4^b-2^b-2^b*4^a)/(1+4^a)(1+4^b) 因为分母恒大于0,所以判断分子符号:2^a+2^a*4^b-2^b-2^b*4^a=2^a-2^b+2^a*4^b-2^b*4^a=2^a-2^b+2^(a+b)*(2^b-2^a)=(2^b-2^a)*(2^(a+b)-1)
0<a<1,0<b<1,所以0<a+b,2^(a+b)>1,又2^a<2^b,所以f(a)-f(b)>0所以函数单调递减.
3)因为函数单调递减,所以最小值趋近于f(1)=2/5,最大值不会求(我给你的图是整个y=(2^x)÷(1+4^x)的)
有解可以看成两函数图像有交点,y1=f(x),y2=m是平行于x轴的直线,所以这条直线位于2/5和最大值之间,也就是m在这个范围内,并且2/5和最大值都不能取.能力所限,抱歉. 我估测最大值是1/2.
综上所述,f(x)=-(2^x)/(1+4^x) -1<x<0
(2^x)/(1+4^x) 0<x<1
0 x=0
2)单调递减
因为是奇函数,所以只需要证明一边,设0<a<b<1,则,f(a)-f(b)=(2^a+2^a*4^b-2^b-2^b*4^a)/(1+4^a)(1+4^b) 因为分母恒大于0,所以判断分子符号:2^a+2^a*4^b-2^b-2^b*4^a=2^a-2^b+2^a*4^b-2^b*4^a=2^a-2^b+2^(a+b)*(2^b-2^a)=(2^b-2^a)*(2^(a+b)-1)
0<a<1,0<b<1,所以0<a+b,2^(a+b)>1,又2^a<2^b,所以f(a)-f(b)>0所以函数单调递减.
3)因为函数单调递减,所以最小值趋近于f(1)=2/5,最大值不会求(我给你的图是整个y=(2^x)÷(1+4^x)的)
有解可以看成两函数图像有交点,y1=f(x),y2=m是平行于x轴的直线,所以这条直线位于2/5和最大值之间,也就是m在这个范围内,并且2/5和最大值都不能取.能力所限,抱歉. 我估测最大值是1/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1请问历史有什么史观
- 2八声甘州 柳永
- 3in winter,it is very cold,let us make snowman,young and old怎么翻译
- 4王字旁,右边是汉(汉字繁体)去掉三点水怎么写?怎么读?
- 5一个等边三角形的周长是3.6分米,它的边长是多少分米?
- 644.4÷37/8+31/37÷25/111+36/37*111/25
- 7一张桌子可以坐6人,两张桌子可以坐10人,三张桌子可以坐14人,照这样下去,6张桌子可以坐多少人?要坐42人
- 8把-3和3分之一和-1和5和+7和-2又分之1和0和2从小到大排列
- 9she struck the keys too hard and two of the strings were broken.直接永two the strings可不可以?
- 10求 第12届晨光文具语文报杯作文大赛结果高中组的获奖结果
热门考点