题目
两个不同的自然数和为60 ,最大公因数和最小公倍数也是60这样的自然数共几组
两个不同的自然数和为60 最大公因数和最小公倍数的和也是60这样的自然数共几组,输错了
两个不同的自然数和为60 最大公因数和最小公倍数的和也是60这样的自然数共几组,输错了
提问时间:2020-08-03
答案
两个不同自然数之和是60,最大公因数与最小公倍数之和也为60.
先考虑这种情况,最小公倍数与最大公约数正好与此相等.此种情况下,大数与小数有倍比关系的.
如:(30,30)最大公约数与最小公倍数相同.
如:(20,40),(15,45),(10,50),(5,55)
还可以将60进行因式公解,可得(12,48)等等.
由此可知,这种情况下:
60=2*2*3*5
取因子为2时,有(30,30)一组
当因子为3时,有(20,40)一组
当因子为4时,有(15,45)一组!
当因子为5时,有(12,48),一组
当因子为6时,有(10,50)一组.
当因子为10时,有(6,54)一组
当因子为12时,有(5,55)一组
当因子为15时,有(4,56)一组
当因子为20时,有(3,57)一组.
当因子为30时,有(2,58)一组
当因子是60有(1,59)一组,不知道这组算不算?
所以共计为C(1,3)+[C(2,4)-C(1,2)]+[C(3,4)-c(2,3)]+C(4,4)=3+4+3+1=11组.
然后再找最大公约数与最小公倍数的值不与两自然数相等的就可以了!但你可以完全去证明不存在这样的数组的!
先考虑这种情况,最小公倍数与最大公约数正好与此相等.此种情况下,大数与小数有倍比关系的.
如:(30,30)最大公约数与最小公倍数相同.
如:(20,40),(15,45),(10,50),(5,55)
还可以将60进行因式公解,可得(12,48)等等.
由此可知,这种情况下:
60=2*2*3*5
取因子为2时,有(30,30)一组
当因子为3时,有(20,40)一组
当因子为4时,有(15,45)一组!
当因子为5时,有(12,48),一组
当因子为6时,有(10,50)一组.
当因子为10时,有(6,54)一组
当因子为12时,有(5,55)一组
当因子为15时,有(4,56)一组
当因子为20时,有(3,57)一组.
当因子为30时,有(2,58)一组
当因子是60有(1,59)一组,不知道这组算不算?
所以共计为C(1,3)+[C(2,4)-C(1,2)]+[C(3,4)-c(2,3)]+C(4,4)=3+4+3+1=11组.
然后再找最大公约数与最小公倍数的值不与两自然数相等的就可以了!但你可以完全去证明不存在这样的数组的!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点