当前位置: > 已知f(x)的定义域为R,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.求证:y=f(x)为偶函数...
题目
已知f(x)的定义域为R,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.求证:y=f(x)为偶函数

提问时间:2020-08-03

答案
令 x=y=0
代入 f(x+y)+f(x-y)=2f(x)f(y)
得 f(0)+f(0)=2f(0)f(0)
所以 f(0)=1
f(x+y)+f(x-y)=2f(x)f(y)
令x=0

f(y)+f(-y)=2f(0)f(y)=2f(y)
就是
f(y)=f(-y)
所以
y=f(x)为偶函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.