当前位置: > 两颗行星AB各有一个卫星a b .卫星轨道各自接近行星表面....
题目
两颗行星AB各有一个卫星a b .卫星轨道各自接近行星表面.
若果两行星那个质量之比为MA/MB=p,两行星半径之比为RA/RB=q.则两卫星的周期之比为Ta/Tb为?
A 根(pq) B q根p C p根(p/q) D q根(q/p)

提问时间:2020-08-02

答案
由万有引力等于向心力可得
GMm/R^2=mR(2*Pi/T)^2
T^2=(2*Pi)^2*R^3/GM
在这里,由于卫星轨道各自接近行星表面,所以卫星的运行半径就是行星的半径
Ta^2=(2*Pi)^2*RA^3/GMA
Tb^2=(2*Pi)^2*RB^3/GMB
两式相比
Ta^2:Tb^2=(RA:RB)^3*(MB/MA)=q^3/p
所以选D
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.