当前位置: > 已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围...
题目
已知函数f(x)=x²-6x+8,x∈[1,a],并且发(x)的最小值为f(a),则实数a的取值范围
当x∈[1,a]时,f(x)的最小值为f(a)
则说明函数f(x)在区间[1,a]上单调递减
而f(x)=x²-6x+8,其对称轴为x=3,且图像开口向上
因此对称轴左侧单调递减,右侧单调递增
也就是说对称轴x=3在区间[1,a]的右侧,
因此a≤3
又a>1
∴1<a≤3
为什么答案不是a=3?

提问时间:2020-08-02

答案
  首先a=3当然成立;
其次a取比1大比3小的数也成立,比如a=2时f(x)在x属于[1,2]上单调递减,f(x)的最大值=f(2)=f(a).
所以,答案不只是a=3,还有比1大比3小的所有实数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.