当前位置: > 若函数f(x+1)=x2-2x+1的定义域为[-2,6],则函数y=f(x)的单调递减区间_....
题目
若函数f(x+1)=x2-2x+1的定义域为[-2,6],则函数y=f(x)的单调递减区间______.

提问时间:2020-08-02

答案
∵函数f(x+1)=x2-2x+1的定义域为[-2,6],∴-2≤x≤6,∴-1≤x+1≤7.
令x+1=t,则x=t-1,且-1≤t≤7,
∴f(t)=(t-1)2-2(t-1)+1=(t-2)2
∴函数y=f(x)的单调递减区间是[-1,2].
故答案为[-1,2].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.