当前位置: > p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0...
题目
p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0

提问时间:2020-08-01

答案
1/[(n+1)n^1/2+n(n+1)^1/2]
=[(n+1)√n-n√(n+1)]/n(n+1)
=1/√n-1/√(n+1)
p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2]
=(1-1/√2)+(1/√2-1/√3)+...+(1/√n-1/√(n+1))
=1-1/√(n+1)
所以,0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.