题目
设f1 f2分别是椭圆x^2/a^2+y^2/b^2(a大于b大于)的左右焦点,过F1倾斜角为45度的直线l与该椭圆相交于P,Q两点,且PQ的绝对值=4/3a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足MP的绝对值=MQ的绝对值,求该椭圆的方程.
提问时间:2020-07-31
答案
(1)设直线 l 的方程为 y=x+c,与椭圆交于 P(Xp,Yp)、Q(Xq,Yq),将 l 代入椭圆方程中:
(x²/a²)+[(x+c)²/b²]=1,整理得 (a²+b²)x²+2ca²x+a²c²-a²b²=0;其两根之差 |Xp-Xq|=△/(a²+b²);
即 |Xp-Xq|=√[(2ca²)²-4(a²+b²)(a²c²-a²b²)] /(a²+b²)=√8ab²/(a²+b²);
按题意 |pq|=4a/3=√2*[√8ab²/(a²+b²)],a²=2b²=2c²;e=c/a=√(1/2)=√2/2;
(2)因 |MP|=|MQ|,即 Xp²+(Yp+1)²=Xq²+(Yq+1)²;
将 y=x+c 代入上式 Xp²+(Xp+c+1)²=Xq²+(Yq+c+1)²,2(Xp-Xq)[(Xp+Xq)+(c+1)]=0;
因为 Xp-Xq≠0,所以 Xp+Xq+c+1=0;又由(1)可推知 Xp+Xq=-2ca²/(a²+b²)=-4c/3;
所以 (-4c/3)+c+1=0,c=3;b²=c²=9,a²=2b²=18;
椭圆方程为 (x²/18)+(y²/9)=1;
(x²/a²)+[(x+c)²/b²]=1,整理得 (a²+b²)x²+2ca²x+a²c²-a²b²=0;其两根之差 |Xp-Xq|=△/(a²+b²);
即 |Xp-Xq|=√[(2ca²)²-4(a²+b²)(a²c²-a²b²)] /(a²+b²)=√8ab²/(a²+b²);
按题意 |pq|=4a/3=√2*[√8ab²/(a²+b²)],a²=2b²=2c²;e=c/a=√(1/2)=√2/2;
(2)因 |MP|=|MQ|,即 Xp²+(Yp+1)²=Xq²+(Yq+1)²;
将 y=x+c 代入上式 Xp²+(Xp+c+1)²=Xq²+(Yq+c+1)²,2(Xp-Xq)[(Xp+Xq)+(c+1)]=0;
因为 Xp-Xq≠0,所以 Xp+Xq+c+1=0;又由(1)可推知 Xp+Xq=-2ca²/(a²+b²)=-4c/3;
所以 (-4c/3)+c+1=0,c=3;b²=c²=9,a²=2b²=18;
椭圆方程为 (x²/18)+(y²/9)=1;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知函数f(x)=ax-(2a-1)lnx+b (1)若f(x)在x=1处的切线方程为y=x,求实数a,b的值; (2)当a>1/2时,研究f(x)的单调性; (3)当a=1时,f(x)在区间(1/e
- 2Lim[2-(r/(r+1))^n]=2,求r的取值范围.
- 3已知a β是第四象限角 且tana=-√ 3 sinβ=-1/2 求sin(a-β)的值
- 4描述家庭不和的句子
- 5他上课听讲比我认真.用英语怎么说?急用!谢谢了
- 6分析句型:水花飞溅,如飞珠滚玉一般.
- 7关于东菱面包机 克的测量用什么啊 量杯上有么?
- 8同一平面内4条直线两两相交最多有几个交点?5条呢?10条呢?
- 9The bank is open every day
- 10高一物理逐差法推导过程