当前位置: > 已知定义在R上的函数f(x)满足f(x+2)=f(2-x)证明y=f(x)的图像关于x=2对称...
题目
已知定义在R上的函数f(x)满足f(x+2)=f(2-x)证明y=f(x)的图像关于x=2对称

提问时间:2020-07-29

答案
证明:
在f(x)上任取一点(x,f(x)),
则此点关于直线x=2对称的点的坐标为(4-x,f(x)),现在只要证明点(4-x,f(x))在y=f(x)上即可,
因为f(2+x)= f(2-x)
所以f(4-x)= f(2+(2-x))= f(2-(2-x))= f(x)
即,f(4-x)= f(x)
因此点(4-x,f(x))在y=f(x)上.
故函数y=f(x)的图像关于直线x=2对称
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.