当前位置: > x2+(m-2)x+1/2m-3=0,求证:无论m取什么实数值,这个方程总有两个不相等的实数根...
题目
x2+(m-2)x+1/2m-3=0,求证:无论m取什么实数值,这个方程总有两个不相等的实数根

提问时间:2020-07-29

答案
要证明有两个不等实根,只用证明方程的判别式Δ恒大于0即可.
证明如下:
Δ=(m-2)^2-4(1/2m-3)
=m^2+4-4m-2m+12
=m^2-6m+16
=(m^2-6m+9)+7
=(m-3)^2+7
∵m-3)^2≥0
∴(m-3)^2+7>0
即Δ>0
∴无论m取什么实数值,这个方程总有两个不相等的实数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.