题目
设a>0且a不等于1,函数f(x)=a^lg(x^2-2x+3)有最大值,求函数f(x)=loga(3-2x-x^2)的单调区间
提问时间:2020-07-29
答案
因为lg(x^2-2x+3)=lg[(x-1)^2+2]≥lg2
又函数f(x)=a^lg(x^2-2x+3)有最大值
那么显然0<a<1
令3-2x-x^2>0得-3<x<1
y=3-2x-x^2的对称轴是x=-1
所以y=3-2x-x^2在(-3,-1)上单调递增,在(-1,1)上单调递减
而对于0<a<1,y=loga(x)是单调递减的.
根据复合函数的同增异减原则
函数f(x)=loga(3-2x-x^2)的单调增区间是(-1,1),单调减区间是(-3,-1)
如果不懂,请Hi我,祝学习愉快!
又函数f(x)=a^lg(x^2-2x+3)有最大值
那么显然0<a<1
令3-2x-x^2>0得-3<x<1
y=3-2x-x^2的对称轴是x=-1
所以y=3-2x-x^2在(-3,-1)上单调递增,在(-1,1)上单调递减
而对于0<a<1,y=loga(x)是单调递减的.
根据复合函数的同增异减原则
函数f(x)=loga(3-2x-x^2)的单调增区间是(-1,1),单调减区间是(-3,-1)
如果不懂,请Hi我,祝学习愉快!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1带书字的成语有哪些
- 2请大家破解一下这条说说的含义
- 3一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是_秒.
- 4I will been to school to learn Enlish. right or not ?
- 5方程4(2-x)-4(x-5)=60的解是多少
- 6请问be good at 和do well in的用法有什么不同?
- 7二氧化氮与水反应生成什么?
- 8直玻璃管插入水银槽中,并在直玻璃 管中注入某种液体,液体高10cm,此时管 内外水银面相差9cm,液
- 91.4g某二价金属与稀硫酸完全反应后得0.5gH2,则金属的相对原子质量为( )
- 1015和20的公倍数有那些