当前位置: > 求证:双曲线上任意一点到两条渐近线的距离的乘积是一个定值....
题目
求证:双曲线上任意一点到两条渐近线的距离的乘积是一个定值.

提问时间:2020-07-28

答案
x²/a²-y²/b²=1
渐近线y=±b/ax
即bx+ay=0和bx-ay=0
假设双曲线上的点P(m,n)
令m=asec²θ
则y²/b²=sec²θ-1=tanx06θ
y=btanθ
P(asecθ,btanθ)
所以到两渐近线距离的积=
[|absecθ+abtanθ}/√(a²+b²)]*[|absecθ-abtanθ}/√(a²+b²)]
=a²b²|(secθ+tanθ)(secθ-tanθ)|/(a²+b²)
=a²b²|sec²θ-tan²θ|/c²
=a²b²|1|/c²
=a²b²/c²
所以是定值
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.