题目
对于数列Xn,若X2k-1→ a (k→∞),X2k→ a (k→∞) 证明:Xn→ a (n→∞)
我不是要解题方法,我要思路.这个思路是证明两者的e的大小然后证明|xn-a|也小于e还是怎么的
现在看到两种方法:
X(2k-1)→ a (k→∞),
所以
对任意M>0,有p1>0,使得当|n|=|2k-1|>M时,|X(2k-1)-a|0,有p2>0,使得当|n|=|2k|>M时,|X(2k)-a|0,有p>0,使得当|n|=|k|>M时,|Xk-a|
我不是要解题方法,我要思路.这个思路是证明两者的e的大小然后证明|xn-a|也小于e还是怎么的
现在看到两种方法:
X(2k-1)→ a (k→∞),
所以
对任意M>0,有p1>0,使得当|n|=|2k-1|>M时,|X(2k-1)-a|0,有p2>0,使得当|n|=|2k|>M时,|X(2k)-a|0,有p>0,使得当|n|=|k|>M时,|Xk-a|
提问时间:2020-07-26
答案
要抓住数列极限的定义:对于任意的m>0,存在正整数N,当n>N时有|Xn-a|2(K1)-1,化简即可得到要求当k>K1,且k>K2时两个不等式(1)才成立.
综合上面的,只要数列的下标比2(K2),2(K1)-1都大时,不等式(1)成立,最后只要在定义中取N是两者大的就好了.
而第二种方法中的p1,p2并不是任意小的整数,不能够证明这题.
总之,极限的定义证明最好是把条件和结论都转化为符号语言,然后观察前后两者的关系,找到从条件到结论的一条桥梁,这个是一般的做法.
综合上面的,只要数列的下标比2(K2),2(K1)-1都大时,不等式(1)成立,最后只要在定义中取N是两者大的就好了.
而第二种方法中的p1,p2并不是任意小的整数,不能够证明这题.
总之,极限的定义证明最好是把条件和结论都转化为符号语言,然后观察前后两者的关系,找到从条件到结论的一条桥梁,这个是一般的做法.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1你对个人修养、人的素质如何理解?
- 2对任意实数x,y,证明xy≤(x+y/2)^2
- 3“随风浅入夜,润物细无声.”的意思
- 4《钢铁是怎样炼成的》中的名人名言
- 5我的画像作文怎么写
- 6配制10%的硫酸溶液200克,需98%的硫酸多少克 需水多少克?
- 7backward and forward和back and forth的区别
- 8用一个空盒子装同样的玻璃球15个,连盒共重125克;用两个同样的空盒子装20个玻璃球,连盒共重170克.一个玻璃球重多少克?一个空盒子重多少克?
- 9紫外光谱分析可以用蒸馏水来做吗?
- 10下列各组的电极材料和电解液,不能组成原电池的是( ) A.铜片、石墨棒,稀硫酸 B.铜片、石墨棒,硝酸银溶液 C.锌片、铜片,稀盐酸 D.铜片、银片,FeCl3溶液