当前位置: > 已知方程x²-4x+2-k²=0且 k≠0不解方程证明方程有两个不相等的实数根,且一个根大于1,一个小于1...
题目
已知方程x²-4x+2-k²=0且 k≠0不解方程证明方程有两个不相等的实数根,且一个根大于1,一个小于1
赶紧的~

提问时间:2020-07-26

答案
x²-4x+2-k²=0
△=16-8+4k^2=4k^2+8>0
所以方程有两个不相等的实数根
设两根为x1,x2
则(x1-1)(x2-1)
=x1x2-(x1+x2)+1
由韦达定理
=2-k^2-4+1
=-k^2-1<0
显然一个根大于1,一个小于1
得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.