当前位置: > (1+x)+(1+x)^2+(1+x)^3+(1+x)^4+(1+x)^5+(1+x)^6的展开式中x^2的系数...
题目
(1+x)+(1+x)^2+(1+x)^3+(1+x)^4+(1+x)^5+(1+x)^6的展开式中x^2的系数
①我知道可以用1+C(3,2)+C(4,2)+C(5,2)+C(6,2)得出结果为35
②但是用另一种方法却得出了不同的结果:上面的式子可以写成[1+(1+x)]^6的展开式再-1,也就是(2+x)^6的展开式再-1,那么求x^2的系数则可以根据通项得出C(6,2)·2^4=240
请问这是为什么啊?

提问时间:2020-07-26

答案
[1+(1+x)]^6的展开式的各项系数不都是1.
[1+(1+x)]^6-1≠(1+x)+(1+x)^2+(1+x)^3+(1+x)^4+(1+x)^5+(1+x)^6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.