当前位置: > 四边形ABCD为正方形,QA垂直于平面ABCD,PD平行于QA,QA=AB=1/2PD,证明:PQ垂直于平面DCQ...
题目
四边形ABCD为正方形,QA垂直于平面ABCD,PD平行于QA,QA=AB=1/2PD,证明:PQ垂直于平面DCQ

提问时间:2020-07-26

答案
CD⊥AD,CD⊥PD,所以CD⊥面PQAD,所以CD⊥QP
又隔离平面PQDA
设AB=1,所以AD=AQ=1,PD=2
QD=√2 PQ=√2(因为Q做PD的垂线交于F,QF=1,PF=1,所以PQ=√2)
那么PQ^2+QD^2=4=PD^2
所以PQ⊥QD
又上证QP⊥CD
所以QP垂直面QDC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.