当前位置: > 设A,B为n阶矩阵,且E-AB可逆,证明E-BA...
题目
设A,B为n阶矩阵,且E-AB可逆,证明E-BA
设A,B为n阶矩阵,且E-AB可逆,证明E-BA也可逆

提问时间:2020-07-25

答案
E-AB可逆,则设其逆为C
有(E-AB)C=E ->B(E-AB)CA=BA -> BCA-BABCA-BA+E=E (两边多配了一个E) -> (E-BA)BCA +(E-BA)=E ->(E-BA)(BCA+E)=E 以上全是恒等变型,可求出E-BA逆
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.