当前位置: > 已知函数f(x)=x^3+ax^2+bx+c,曲线在点x=1处的切线为3x-y+1=0,若x=2/3时,y=f(x )有极值....
题目
已知函数f(x)=x^3+ax^2+bx+c,曲线在点x=1处的切线为3x-y+1=0,若x=2/3时,y=f(x )有极值.
求y=f(x)在[-3,1]上的最大值和最小值.

提问时间:2020-07-25

答案
f(x)=x^3+ax^2+bx+cf`(x)=3x^2+2ax+b曲线在点x=1处的切线为3x-y+1=0,则有切点坐标为(1,4),切线斜率k=3所以有:k=f`(1)=3+2a+b=3 1) 4=1+a+b+c 2)又因为x=2/3时,y=f(x )有极值. ...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.