题目
f(x)与g(x)均为(a,b)上的增函数,则f(x)·g(x)也是区间(a,b)上的增函数.
f(x)与g(x)在(a,b)上分别是递增递减函数,且g(x)≠0,则f(x)/g(x)在(a,b)上是递增函数
这两个命题是对是错?怎么证明
f(x)与g(x)在(a,b)上分别是递增递减函数,且g(x)≠0,则f(x)/g(x)在(a,b)上是递增函数
这两个命题是对是错?怎么证明
提问时间:2020-07-25
答案
两个命题都是假命题.现就第一个命题举例说明,如f(x)=x-2与g(x)=-1/x均为(1,2)上的增函数,但f(x)·g(x)=-1+2/x却是区间(1,2)上的减函数.
又如f(x)=x-2与g(x)=1/x在(0,1)上分别是递增递减函数,且g(x)≠0,但f(x)/g(x)=x^2-2x在(0,1)上却是递减函数.
又如f(x)=x-2与g(x)=1/x在(0,1)上分别是递增递减函数,且g(x)≠0,但f(x)/g(x)=x^2-2x在(0,1)上却是递减函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1他向我要了一些茶的英语怎么说
- 2已知函数f(x)=ax^2+lnx,g(x)=1/2x^2+2ax,a∈r,若在区间[1,+∞)上f(x)图像恒在g(x)下方,求a取值范围.
- 3关于奥黛丽赫本的英文简介
- 4不动点为什么可以在高次的分式递推中运用
- 5“九点连线”是一道著名的数学题,你能用一笔画4条连续的直线段,把图中所有的9个点都连起来吗?请你在下图画出来.
- 6fill of 和 fill with的区别
- 7我要用到这个积分公式∫a^sin(x)
- 8听诊器是通过橡皮管将声音传到耳朵里.这样做有什么好处?
- 9两袋彩球,如果从第一袋取出15个放入第二袋,这时第二袋里的彩球正好是第一袋的5/7,第二袋原有25个彩球,第一袋里原有多少个彩球?
- 101024+512+256+128+64+32+16+8+4+2+1求解