当前位置: > 奇函数y=f(x)的定义域为R,当x≥0时,f(x)=2x-x平方,设函y=f(x)[x属于[a,b]]....
题目
奇函数y=f(x)的定义域为R,当x≥0时,f(x)=2x-x平方,设函y=f(x)[x属于[a,b]].
奇函数y=f(x)的定义域为R,当x≥0时,f(x)=2x-x平方,设函y=f(x)[x属于[a,b]]的值域为[1/b,1/a](a不等于b),则b的最小值为?

提问时间:2020-07-21

答案
此题应由导数求解.
f'(x) = 2 - 2x
f'(x)为0时,x为1,因此可得x为1是,函数f(x)为最小,即f(x)最小值为1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.