当前位置: > 用数学归纳法证明:-1+3-5+…+(-1)n(2n-1)=(-1)nn....
题目
用数学归纳法证明:-1+3-5+…+(-1)n(2n-1)=(-1)nn.

提问时间:2020-07-19

答案
证明:(1)当n=1时,左边=-1,右边=-1,
∴左边=右边
(2)假设n=k时等式成立,即:-1+3-5+…+(-1)k(2k-1)=(-1)kk;
当n=k+1时,等式左边=-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
=(-1)kk+(-1)k+1(2k+1)
=(-1)k+1.(-k+2k+1)
=(-1)k+1(k+1).
这就是说,n=k+1时,等式成立.
综上(1)(2)可知:-1+3-5+…+(-1)n(2n-1)=(-1)nn对于任意的正整数成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.