当前位置: > 已知函数f(x)=x3+ax2+3x-9在R上存在极值,则实数a的取值范围是...
题目
已知函数f(x)=x3+ax2+3x-9在R上存在极值,则实数a的取值范围是

提问时间:2020-07-19

答案
f(x)=x3+ax2+3x-9
f(x)'=3x^2+2ax+3
函数f(x)=x3+ax2+3x-9在R上存在极值
故f(x)'至少有一个根
△≥0
(2a)^2-4x3x3≥0
即a≥3或a≤-3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.