当前位置: > 已知函数f(x)=loga[1-m(x-2)]/(x-3) (a>0,a≠1),对定义域内任意x都有f(2-x)+f(2+x)=0成立....
题目
已知函数f(x)=loga[1-m(x-2)]/(x-3) (a>0,a≠1),对定义域内任意x都有f(2-x)+f(2+x)=0成立.
(1)求实数m的值;
(2)若当x∈(b,a)时,f(x)的取值范围恰为(1,+∞),求实数a,b的值.
解答详细的我将加到100

提问时间:2020-07-18

答案
(1)
f(2-x)=loga[1-m(2-x-2)]/(2-x-3)=loga[1+mx)]/(-1-x)
f(2+x)=loga[1-m(2+x-2)]/(2+x-3)=loga[1-mx)]/(x-1)
f(2-x)+f(2+x)=0

loga[1-mx)]/(x-1)+ga[1+mx)]/(-1-x)=0
即longa[(1-m^2x^2)/(1-x^2)]=0
所以[(1-m^2x^2)/(1-x^2)]=1
解得m=±1
将m=±1带入f(x)发现m=1是f(x)不成立
故m=-1为所求
(2)
据题1解析知f(x)=loga[x-1]/(x-3)
因为当x∈(b,a),f(x)的取值范围恰为(1,+∞)
零界分析
即当x=a时,f(x)=+∞
将x=a带入原式得
(a-1)/(a-3)=a^+∞
推出a=3
同理将x=b,a=3带入原式
得到b=4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.