当前位置: > 高二数学-已知数列『an』中a1=2,a(n+1)=an+2n...若an+3n-2=2/bn,求数列bn的前n项和Sn....
题目
高二数学-已知数列『an』中a1=2,a(n+1)=an+2n...若an+3n-2=2/bn,求数列bn的前n项和Sn.

提问时间:2020-07-17

答案
a(n+1)=an +2n
a(n+1)-an=2n
an-a(n-1)=2(n-1)
a(n-1)-a(n-2)=2(n-2)
…………
a2-a1=2
累加
an-a1=2[1+2+...+(n-1)]=2n(n-1)/2=n²-n
an=a1+n²-n=2+n²-n=n²-n+2
2/bn=an+3n-2=n²-n+2+3n-2=n²+2n
bn=2/(n²+2n)=2/[n(n+2)]=1/n -1/(n+2)
Sn=b1+b2+...+bn
=1/1-1/3+1/2-1/4+...+1/n-1/(n+2)
=(1/1+1/2+...+1/n)-[1/3+1/4+...+1/(n+2)]
=1+1/2 -1/(n+1)-1/(n+2)
=3/2 -1/(n+1) -1/(n+2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.