题目
已知函数f(x)=1/2x^2-lnx 若g(x)=-2/3x^3+X^2.证明当X>1时,函数f(x)的图像恒在g(x)的上方.
提问时间:2020-07-13
答案
分析,要证明f(x)的图像恒在g(x)的上方,
即是证明,当x>1时,f(x)>g(x)
即是证明,1/2*x²-lnx>-2/3*x³+x²
即是证明,2/3*x³-1/2*x²-lnx>0.
证明:
设t(x)=2/3*x³-1/2*x²-lnx
t'=2x²-x-1/x
=(2x³-x²-1)/x
=(x-1)(2x²+x+1)/x
当x>1时,x-1>0,2x²+x+1>0
∴t'>0
∴t在(1,+∞)上增函数,
因此,t(x)>t(1)=2/3-1/2=1/6>0
∴2/3*x³-1/2*x²-lnx>0
即是,1/2*x²-lnx>-2/3*x³+x²
因此,当X>1时,函数f(x)的图像恒在g(x)的上方.
即是证明,当x>1时,f(x)>g(x)
即是证明,1/2*x²-lnx>-2/3*x³+x²
即是证明,2/3*x³-1/2*x²-lnx>0.
证明:
设t(x)=2/3*x³-1/2*x²-lnx
t'=2x²-x-1/x
=(2x³-x²-1)/x
=(x-1)(2x²+x+1)/x
当x>1时,x-1>0,2x²+x+1>0
∴t'>0
∴t在(1,+∞)上增函数,
因此,t(x)>t(1)=2/3-1/2=1/6>0
∴2/3*x³-1/2*x²-lnx>0
即是,1/2*x²-lnx>-2/3*x³+x²
因此,当X>1时,函数f(x)的图像恒在g(x)的上方.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1我要参加辩论大赛我是2辩需要在攻辩问问题,我的辩论题目是(挫折有利于成才).我们是正方.
- 2his family didnot live here()A.no more.B.no longer.C.not any more.D.any longer
- 3帮忙数一数这篇作文多少字不算标点
- 4英语翻译
- 5《过年》 提纲
- 6“神舟”五号载人飞船于2003年10月15日上午9时成功升空,2003年10月16日凌晨6时23分安然着陆.它在空中共飞行了_小时_分.
- 7英语园地(解释成英文)
- 8大家都知道败北的意思是失败 那请教大家下“败北”的典故
- 9求何岳拾金不昧全文翻译!
- 10【初四化学】从氢,氧,硫,钠四种元素中选择适当的元素,写出符合下列要求的化合物的化学式(各一种)