当前位置: > 用反证法证明:若a,b,c,d属于实数,且ad-bc=1,则a^2+b^2+c^2+d^2+ab+cd不等于1...
题目
用反证法证明:若a,b,c,d属于实数,且ad-bc=1,则a^2+b^2+c^2+d^2+ab+cd不等于1

提问时间:2020-06-30

答案
证明,
用反证法,假设a^2+b^2+c^2+d^2+ab+cd=1
则有a^2+b^2+c^2+d^2+ab+cd = ad-bc
移项得:
a^2+b^2+c^2+d^2+ab+cd-ad+bc=0
两边乘以2,有:
2a^2+2b^2+2c^2+2d^2+2ab+2cd-2ad+2bc=0

(a+b)^2 + (c+d)^2 + (a-d)^2 + (b+c)^2 = 0
所以一定有:
a+b = c+d = a-d = b+c = 0
解得
a = c = b = d = 0
因此ad-bc=0
与已知矛盾.
故原假设不成立,因此a^2+b^2+c^2+d^2+ab+cd不等于1.
希望有用.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.