当前位置: > 已知双曲线x^2/a^2-y^2/b^2=1(a0,b0)两焦点为F1F2,过F2作x轴的垂线交双曲线于AB两点,且三角形ABF1内切圆的半径为a此双曲线的离心率...
题目
已知双曲线x^2/a^2-y^2/b^2=1(a0,b0)两焦点为F1F2,过F2作x轴的垂线交双曲线于AB两点,且三角形ABF1内切圆的半径为a此双曲线的离心率

提问时间:2020-06-26

答案
欲求双曲线的离心率,只须建立a,c的关系式即可,由双曲线的定义得:|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,从而△ABF1周长为:2|AB|+4a,利用△ABF1内切圆的半径为a,得到△ABF1面积为:S= (|AF1|+|BF1|+|AB|)×a,又S= |AB|×2c,由面积相等即可建立a,c的关系,即可求得此双曲线的离心率.由双曲线的定义得:
|AF1|-|AF2|=2a,|BF1|-|BF2|=2a两式相加得:|AF1|+|BF1|-|AB|=4a,
又在双曲线中,|AB|=2× ,
∴△ABF1周长为:|AF1|+|BF1|+|AB|=2|AB|+4a=4× +4a,
∵△ABF1内切圆的半径为a,
∴△ABF1面积为:S= (|AF1|+|BF1|+|AB|)×a
又S= |AB|×2c,
∴ (4× +4a)×a= |AB|×2c
即c2-a2=ac
解得:e=则此双曲线的离心率二分之 一加根号五
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.