题目
已知三角形ABC的两个顶点A(-1,5) B(0,-1) ,又知∠C的平分线所在的直线方程2x-3y+6=0,求三角形三边
提问时间:2020-06-25
答案
设 B 关于直线 2x-3y+6=0 的对称点为 B1(a,b),
则BB1的中点在直线 2x-3y+6=0 上:2*(a+0)/2-3*(b-1)/2+6=0 ,----------①
且 BB1 垂直于直线 2x-3y+6=0 :(b+1)/(a-0)= -3/2 ,----------②
由以上两式解得 a= -36/13 ,b=41/13 ,即 B1(-36/13,41/13),
由于 A、B1 均在直线 AC 上,
因此由两点式可得直线 AC 的方程为 (y-5)/(41/13-5)=(x+1)/(-36/13+1) ,
化简得 24x-23y+139=0 ;
联立 24x-23y+139=0 与 2x-3y+6=0 可解得 C(-279/26 ,-67/13),
因此由两点式可得 BC 方程为 (y+1)/(-67/13+1)=(x-0)/(-279/26-0) ,
化简得 12x-31y-31=0 ;
由两点式可得 AB 的方程为 6x+y+1=0 .
则BB1的中点在直线 2x-3y+6=0 上:2*(a+0)/2-3*(b-1)/2+6=0 ,----------①
且 BB1 垂直于直线 2x-3y+6=0 :(b+1)/(a-0)= -3/2 ,----------②
由以上两式解得 a= -36/13 ,b=41/13 ,即 B1(-36/13,41/13),
由于 A、B1 均在直线 AC 上,
因此由两点式可得直线 AC 的方程为 (y-5)/(41/13-5)=(x+1)/(-36/13+1) ,
化简得 24x-23y+139=0 ;
联立 24x-23y+139=0 与 2x-3y+6=0 可解得 C(-279/26 ,-67/13),
因此由两点式可得 BC 方程为 (y+1)/(-67/13+1)=(x-0)/(-279/26-0) ,
化简得 12x-31y-31=0 ;
由两点式可得 AB 的方程为 6x+y+1=0 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1谁有分词作状语选择练习题啊
- 2仿照画线句子造句,使之与前面画线的句子构成排比句
- 3试求两个最小相邻自然数,它们各自的数字和都能被219整除.
- 4东南亚地区唯一的内陆国家是哪一个
- 5therels time for every thing 是摸意思啊
- 6若a减1的绝对值加(ab减2)的平方=0 求ab分之一+(a+1)乘(b+1)分之一+(a+2)乘(b+2)分之一
- 7如图,F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为(
- 8what can the bird
- 9高二中国地理试题
- 1012)The Obstacle of Intercultural Communication