题目
抛物线焦点弦问题
已知抛物线的中点为原点,P大于0,焦点为F,过焦点的直线交抛物线于A、B两点,A、B两点在抛物线准线上的射影为A1、B1,连接A1B,AB1,问这两条直线是否都经过原点.
已知抛物线的中点为原点,P大于0,焦点为F,过焦点的直线交抛物线于A、B两点,A、B两点在抛物线准线上的射影为A1、B1,连接A1B,AB1,问这两条直线是否都经过原点.
提问时间:2020-06-25
答案
不妨设抛物线方程为y^2=2px,
直线AB过焦点(p/2,0),可设为:x=ky+p/2
联立可得y^2-2kpy-p^2=0,
设 A(y1^2/(2p),y1),B(y2^2/(2p),y2),则B1(-p/2,y2)
∴ kOA=2p/y1,kOB1=-2y2/p
根据韦达定理可知:y1y2=-p^2,
∴kOA=KOB1,故A、O、B1三点共线(O为原点).
同理可证:B、O、A1三点共线(O为原点).
所以这两条直线是否都经过原点.
直线AB过焦点(p/2,0),可设为:x=ky+p/2
联立可得y^2-2kpy-p^2=0,
设 A(y1^2/(2p),y1),B(y2^2/(2p),y2),则B1(-p/2,y2)
∴ kOA=2p/y1,kOB1=-2y2/p
根据韦达定理可知:y1y2=-p^2,
∴kOA=KOB1,故A、O、B1三点共线(O为原点).
同理可证:B、O、A1三点共线(O为原点).
所以这两条直线是否都经过原点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1采用气相色谱法对维生素E含量测定时,怎样控制温度
- 2什么动物反映最慢
- 3sinx-sinx*sinx极值
- 40.25m= um= nm
- 5我讨厌吃过饭之后走路.我肯定我的分数很低.用英语翻译
- 6在物体做平抛运动的曲线图上,任取一点p(x,y)的速度方向的反向延长线交与x轴上的A点,则A 点的横坐标为:
- 7王芳的存款是莉莉存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元
- 8It happened when I____pass the museum A walk B am walking C will walk D was walking 选哪个,为什么
- 9要使3个连续奇数之和不少于100,那么3个奇数中,那么最小奇数不小于什么数
- 10within by的区别