当前位置: > 高中不等式证明 a+b+c-3开方(abc)≥a+b-2根号(ab)...
题目
高中不等式证明 a+b+c-3开方(abc)≥a+b-2根号(ab)
若a,b,c,属于正实数,a+b+c-3开方(abc)≥a+b-2根号(ab)

提问时间:2020-06-13

答案
要证a+b+c-3开立方(abc)≥a+b-2根号(ab)
即要证 c+2根号(ab)≥3开立方(abc)
因c+2根号(ab)=c+根号(ab)+根号(ab)
≥3[c*根号(ab)*根号(ab)]^(1/3)
=3[c*根号(a²b²)]
=3(abc)^(1/3)
得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.