题目
数学不等式证明:n>2时..logn(n-1)
提问时间:2020-06-13
答案
logn(n-1)-log(n+1)n=lg(n-1)/lgn-lgn/lg(n+1)=[lg(n-1)*lg(n+1)-(lgn)^2]/lgn*lg(n+1)
而lg(n-1)*lg(n+1)≤{[lg(n-1)+lg(n+1)]/2}^2={[lg(n^2-1)]/2}^20,
故logn(n-1)
而lg(n-1)*lg(n+1)≤{[lg(n-1)+lg(n+1)]/2}^2={[lg(n^2-1)]/2}^20,
故logn(n-1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点