当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 【题文】已知函数f(x)=2x+k·2-x,k∈R.(1)若函数f(x)为奇函数,求实数k的值;(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数...
题目
题型:难度:来源:
【题文】已知函数f(x)=2x+k·2-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.
答案
【答案】(1)k=-1.   (2)(0,+∞)
解析
【解析】(1)∵f(x)=2x+k·2-x是奇函数,
∴f(-x)=-f(x),x∈R,
即2-x+k·2x=-(2x+k·2-x),
∴(1+k)+(k+1)·22x=0对一切x∈R恒成立,
∴k=-1.
(2)∵x∈[0,+∞),均有f(x)>2-x
即2x+k·2-x>2-x成立,
∴1-k<22x对x≥0恒成立,
∴1-k<(22x)min
∵y=22x在[0,+∞)上单调递增,
∴(22x)min=1,
∴k>0.
∴实数k的取值范围是(0,+∞).
核心考点
试题【【题文】已知函数f(x)=2x+k·2-x,k∈R.(1)若函数f(x)为奇函数,求实数k的值;(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
【题文】已知,若恒成立,则的取值范围是(   )
A.B.C.D.
题型:难度:| 查看答案
【题文】已知函数,则使函数有零点的实数的取值范围是(  )
A.B.C.D.
题型:难度:| 查看答案
【题文】(2013?湖北)已知a为常数,函数f(x)=x(lnx
题型:难度:| 查看答案
【题文】已知函数则函数的零点个数是(    )
A.0B.1C.2D.3
题型:难度:| 查看答案
【题文】定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是(  )
A.y=x2+1
B.y=|x|+1
C.y=
D.y=
题型:难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.