当前位置:高中试题 > 数学试题 > 集合运算 > 【题文】设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围....
题目
题型:难度:来源:
【题文】设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围.
答案
【答案】a=1或a≤-1
解析
【解析】由A∩B=B得B?A,而A={-4,0},
Δ=4(a+1)2-4(a2-1)=8a+8,
当Δ=8a+8<0,即a<-1时,B=?,符合B?A;
当Δ=8a+8=0,即a=-1时,B={0},符合B?A;
当Δ=8a+8>0,即a>-1时,B中有两个元素,而B?A={-4,0};
∴B={-4,0}得a=1.∴a=1或a≤-1.
核心考点
试题【【题文】设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围.】;主要考察你对集合运算等知识点的理解。[详细]
举一反三
【题文】若集合,则(  )
A.B.
C.D.
题型:难度:| 查看答案
【题文】若集合,则(  )
A.B.
C.D.
题型:难度:| 查看答案
【题文】设集合(       )
A.{x|x<-2或x>2}B.{x|x>2}
C.{x|x>1}D.{x|x<1}
题型:难度:| 查看答案
【题文】已知全集,则(  )
A.B.C.D.
题型:难度:| 查看答案
【题文】集合,求
题型:难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.