当前位置:高中试题 > 数学试题 > 不等式 > 证明:xn-nan-1x+(n-1)an能被(x-a)2整除(a≠0)....
题目
题型:不详难度:来源:
证明:xn-nan-1x+(n-1)an能被(x-a)2整除(a≠0).
答案
证明:当n=1时,
xn-nan-1x+(n-1)an=x-x=0
易得此时xn-nan-1x+(n-1)an能被(x-a)2整除成立;
设n=k时,xn-nan-1x+(n-1)an能被(x-a)2整除成立,
即xk-kak-1x+(k-1)ak能被(x-a)2整除成立,
则n=k+1时,
xn-nan-1x+(n-1)an=xk+1-(k+1)akx+kak+1
=xk-kak-1x+(k-1)ak+kak─1(x─a)2
即xn-nan-1x+(n-1)an=xk+1-(k+1)akx+kak+1也能被(x-a)2整除
综合,xn-nan-1x+(n-1)an能被(x-a)2整除(a≠0).
核心考点
试题【证明:xn-nan-1x+(n-1)an能被(x-a)2整除(a≠0).】;主要考察你对不等式等知识点的理解。[详细]
举一反三
已知数列{an}中,a1=1,且an=
n
n-1
an-1+2n•3n-2(n≥2,n∈N).
(1)求数列{an}的通项公式;
(2)令bn=
3n-1
an
 (n∈N),数列{bn}的前n项和为Sn,试比较S2与n的大小;
(3)令cn=
an+1
n+1
 (n∈N*),数列{
2cn
(cn-1)2
}的前n项和为Tn.求证:对任意n∈N*,都有 Tn<2.
题型:沅江市模拟难度:| 查看答案
已知数列an满足递推关系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范围;
(2)用数学归纳法证明:|an-(


2
-1)|<
1
2n
(n≥3,n∈N);
(3)若bn=
1
an
,求证:|bn-(


2
+1)|<
12
2n
(n≥3,n∈N).
题型:武汉模拟难度:| 查看答案
已知数列{an}中,a1=


2
2
an+1=


n+1
n+2
an(n=1,2,…)
.计算a2,a3,a4的值,根据计算结果,猜想an的通项公式,并用数学归纳法进行证明.
题型:不详难度:| 查看答案
用数学归纳法证明等式:n∈N,n≥1,1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
题型:不详难度:| 查看答案
若xi>0(i=1,2,3,…,n),观察下列不等式:(x1+x2)(
1
x1
+
1
x2
)≥4,(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥9,…,

请你猜测(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)满足的不等式,并用数学归纳法加以证明.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.