当前位置:高中试题 > 数学试题 > 不等式 > 用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是(  ).A.假使n=2k+1时正确,再推n=2k+3正确B.假使n=2k-1时正确,再推...
题目
题型:不详难度:来源:
用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”的第二步
是(  ).
A.假使n=2k+1时正确,再推n=2k+3正确
B.假使n=2k-1时正确,再推n=2k+1正确
C.假使nk时正确,再推nk+1正确
D.假使nk(k≥1),再推nk+2时正确(以上k∈N)

答案
B
解析
因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第k+1个正奇数即n=2k+1正确.
核心考点
试题【用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是(  ).A.假使n=2k+1时正确,再推n=2k+3正确B.假使n=2k-1时正确,再推】;主要考察你对不等式等知识点的理解。[详细]
举一反三
用数学归纳法证明n(ab是非负实数,n∈N)时,假设n
k命题成立之后,证明nk+1命题也成立的关键是________________.
题型:不详难度:| 查看答案
平面内有n(n∈Nn≥2)条直线,其中任何两条不平行,任何三条不过
同一点,证明:交点的个数f(n)=.
题型:不详难度:| 查看答案
用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N)能被9整除”,要利
用归纳法假设证nk+1时的情况,只需展开(  ).
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

题型:不详难度:| 查看答案
用数学归纳法证明对n∈N都有.
题型:不详难度:| 查看答案
已知,n∈NAn=2n2Bn=3n,试比较AnBn的大小,
并加以证明.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.