当前位置:高中试题 > 数学试题 > 函数的相关概念 > 设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7 5)等于(    )A.0.5B.-0.5C. 1.5...
题目
题型:不详难度:来源:
f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7 5)等于(    )
A.0.5B.-0.5C. 1.5D.-1.5

答案
B
解析
f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)
=-f(1.5)=-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5.
核心考点
试题【 设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7 5)等于(    )A.0.5B.-0.5C. 1.5】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
 如果函数f(x)在R上为奇函数,在(-1,0)上是增函数,且f(x+2)=-f(x),试比较f(),f(),f(1)的大小关系_________. 
题型:不详难度:| 查看答案
已知f(x)= (a∈R)是R上的奇函数,
(1)求a的值;
(2)求f(x)的反函数f1(x);
(3)对任意给定的k∈R+,解不等式f1(x)>lg
题型:不详难度:| 查看答案
已知关于x的实系数二次方程x2+ax+b=0有两个实数根αβ
证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.
题型:不详难度:| 查看答案
(本题满分12分)在月份,有一新款服装投入某商场销售,日该款服装仅销售出件,第二天售出件,第三天销售件,然后,每天售出的件数分别递增件,直到日销售量达到最大后,每天销售的件数分别递减件,到月底该服装共销售出件.(Ⅰ)问月几号该款服装销售件数最多?其最大值是多少?(Ⅱ)按规律,当该商场销售此服装超过件时,社会上就流行,而日销售量连续下降,并低于件时,则流行消失,问该款服装在社会上流行是否超过天?并说明理由。
题型:不详难度:| 查看答案
已知函数f(x)是y=-1(x∈R)的反函数,函数g(x)的图像
与函数y=-的图像关于y轴对称,设F(x)=f(x)+g(x).
(1)求函数F(x)的解析式及定义域;
(2)试问在函数F(x)的图像上是否存在两个不同的点AB,使直线AB恰好与y轴垂直?若存在,求出AB的坐标;若不存在,说明理由 
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.