当前位置:高中试题 > 数学试题 > 函数的相关概念 > 一位牧民计划用篱笆为他的马群围一个面积为1 600 m2的矩形牧场,由于受自然环境的影响,矩形的一边不能超过a m,求用最少篱笆围成牧场后矩形的长与宽....
题目
题型:不详难度:来源:
一位牧民计划用篱笆为他的马群围一个面积为1 600 m2的矩形牧场,由于受自然环境的影响,矩形的一边不能超过a m,求用最少篱笆围成牧场后矩形的长与宽.
答案
当a≥40时,矩形的长与宽都是40 m;
当0<a<40时,矩形的长与宽分别是a m与 m.
解析
设一边的长为x m,0<x≤a,则宽为 m,矩形的周长为W,
那么W=2(x+,则W=2
显然当=,即x=40时,
若a≥40时,周长W最小,其最小值为160,
此时,矩形的长与宽都是40 m.
若0<a<40时,由于函数W=2(x+在区间(0,a]上是减函数,则当x=a时,周长W最小,其最小值为2(a+,此时,矩形的长与宽分别是a m与 m.
故当a≥40时,矩形的长与宽都是40 m;
当0<a<40时,矩形的长与宽分别是a m与 m.
核心考点
试题【一位牧民计划用篱笆为他的马群围一个面积为1 600 m2的矩形牧场,由于受自然环境的影响,矩形的一边不能超过a m,求用最少篱笆围成牧场后矩形的长与宽.】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
已知函数f(x)=,g(x)=.
(1)证明f(x)满足f(-x)=-f(x),并求f(x)的单调区间;
(2)分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明.
题型:不详难度:| 查看答案
给出下列两个条件:(1)f(+1)=x+2;
(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.
题型:不详难度:| 查看答案
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x<1),则出厂价相应提高的比例为0.75x, 同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.
(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度利润比上年有所增加,问投入成本增加的比例x应在什么范围内?
题型:不详难度:| 查看答案
(1)已知f()=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(3)已知f(x)满足2f(x)+f()=3x,求f(x).
题型:不详难度:| 查看答案
要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.