当前位置:高中试题 > 数学试题 > 函数的相关概念 > 关于的函数,有下列结论:①该函数的定义域是;②该函数是奇函数;③该函数的最小值为; ④当 时为增函数,当时为减函数;其中,所有正确结论的序号是       ...
题目
题型:不详难度:来源:
关于的函数,有下列结论:
①该函数的定义域是;②该函数是奇函数;
③该函数的最小值为; ④当 时为增函数,当为减函数;
其中,所有正确结论的序号是       
答案
①④
解析

试题分析::①函数f(x)的定义域是(0,+∞),令>0,解得x>0,故定义域是(0,+∞),命题正确;
②函数f(x)是奇函数,由①知,定义域不关于原点对称,故不是奇函数,命题不正确;
③函数f(x)的最小值为-lg2,因为f(x)=lg=lg≤lg=-lg2,最大值是-lg2,故命题不正确;
④当0<x<1时,函数f(x)是增函数;当x>1时,函数f(x)是减函数,命题正确,因为f′(x)=lg,令导数大于0,可解得0<x<1,令导数大于0,得x>1,故命题正确.综上,①④正确
点评:解决该试题的关键是①根据对数函数的真数大于0,建立关系式解之验证定义域即可;②函数f(x)是奇函数,利用奇函数的定义进行判断;③函数f(x)的最小值为-lg2,利用基本不等式与对数的运算性质求出最值;④求出导数,解出单调区间,验证即可.
核心考点
试题【关于的函数,有下列结论:①该函数的定义域是;②该函数是奇函数;③该函数的最小值为; ④当 时为增函数,当时为减函数;其中,所有正确结论的序号是       】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.
题型:不详难度:| 查看答案
将函数上的所有极值点按从小到大排成一列,给出以下不等式: ①; ②;③;④;其中,正确的判断是(     )
A.①③B.①④C.②③D.②④

题型:不详难度:| 查看答案
(本小题满分14分)广东某民营企业主要从事美国的某品牌运动鞋的加工生产,按国际惯例以美元为结算货币,依据以往加工生产的数据统计分析,若加工产品订单的金额为万美元,可获得加工费近似为万美元,受美联储货币政策的影响,美元贬值,由于生产加工签约和成品交付要经历一段时间,收益将因美元贬值而损失万美元,其中为该时段美元的贬值指数,,从而实际所得的加工费为(万美元).
(Ⅰ)若某时期美元贬值指数,为确保企业实际所得加工费随的增加而增加,该企业加工产品订单的金额应在什么范围内?
(Ⅱ)若该企业加工产品订单的金额为万美元时共需要的生产成本为万美元,已知该企业加工生产能力为(其中为产品订单的金额),试问美元的贬值指数在何范围时,该企业加工生产将不会出现亏损.
题型:不详难度:| 查看答案
(本小题满分14分)设函数),
(Ⅰ)令,讨论的单调性;
(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知,若实数是方程的解,且,则的值是(   )
A.恒为负B.等于零C.恒为正D.不小于零

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.