当前位置:高中试题 > 数学试题 > 函数的相关概念 > 已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x...
题目
题型:不详难度:来源:
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).
(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;
(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.
答案
;⑵为所求.
解析

试题分析:⑴由题意,函数的定义域为
 
恒成立,记
由于函数上是增函数,故,所以
,所以为所求.                         5分
⑵由题知,整理得
,则
注意到,故函数上单调递减,在上单调递增.
知,
所以关于的方程在区间上恰有一个实根 时
为所求.
点评:近几年新课标高考对于函数与导数这一综合问题的命制,一般以有理函数与半超越(指数、对数)函数的组合复合且含有参量的函数为背景载体,解题时要注意对数式对函数定义域的隐蔽,这类问题重点考查函数单调性、导数运算、不等式方程的求解等基本知识,注重数学思想(分类与整合、数与形的结合)方法(分析法、综合法、反证法)的运用.把数学运算的“力量”与数学思维的“技巧”完美结合
核心考点
试题【 已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?
题型:不详难度:| 查看答案
若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
设函数f(x)=的最大值为M,最小值为N,那么M+N= _________ 
题型:不详难度:| 查看答案
已知函数).
(1)若函数处取得极大值,求的值;
(2)时,函数图象上的点都在所表示的区域内,求的取值范围;
(3)证明:.
题型:不详难度:| 查看答案
,…, .若,则的值为      .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.