当前位置:高中试题 > 数学试题 > 函数的相关概念 > 有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。据调查统计,通过这两条公路从城...
题目
题型:不详难度:来源:
有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间(天数)
10
11
12
13
通过公路1的频数
20
40
20
20
通过公路2的频数
10
40
40
10
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发。
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其它费用忽略不计),此项费用由生产商承担。如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天销售商将少支付给生产商2万元。如果汽车A、B长期按(1)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大。
(注:毛利润=(销售商支付给生产商的费用)—(一次性费用))
答案
(1)A选路1,B选路2; (2)B的利润大
解析

试题分析:(I)求出频率分布表,计算汽车A在约定日期(某月某日)的前11天出发选择公路1,2将货物运往城市乙的概率;汽车B在约定日期(某月某日)的前12天出发选择公路1,2将货物运往城市乙的概率,即可得到结论;
(II)分别确定汽车A、B为生产商获得毛利润的概率分布列,求出期望,比较期望值,即可得到结论
解:(I)频率分布表,如下:
所用的时间(天数)
10
11
12
13
通过公路1的频数
0.2
0.4
0.2
0.2
通过公路2的频数
0.1
0.4
0.4
0.1
设A1,A2分别表示汽车A在约定日期(某月某日)的前11天出发选择公路1,2将货物运往城市乙;B1,B2分别表示汽车B在约定日期(某月某日)的前12天出发选择公路1,2将货物运往城市乙.
∵P(A1)=0.2+0.4=0.6,P(A2)=0.1+0.4=0.5,∴汽车A选择公路1,
∵P(B1)=0.2+0.4+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∴汽车A选择公路2;
(II)设X表示汽车A选择公路1,销售商支付给生产商的费用,则X=42,40,38,36
X的分布列如下:
 X
 42
 40
 38
36 
 P
 0.2
 0.4
 0.2
 0.2
∴E(X)=42×0.2+40×0.4+38×0.2+36×0.2=39.2
∴汽车A选择公路1时的毛利润为39.2-3.2=36.0(万元)
设Y为汽车B选择公路2时的毛利润,则Y=42.4,40.4,38.4,36.4
分布列如下
 Y
 42.4
 40.4
 38.4
36.4
 P
 0.1
 0.4
 0.4
 0.1
∴E(Y)=42.4×0.1+40.4×0.4+38.4×0.4+36.4×0.1=39.4
∵36.0<39.4,∴汽车B为生产商获得毛利润更大.
点评:本题考查离散型随机变量的分布列和期望,考查比较两个变量的期望值,得到最优思路,是一个利用概率知识解决实际问题的题目,是一个综合题目
核心考点
试题【有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。据调查统计,通过这两条公路从城】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
已知函数 
(I)当时,求在[1,]上的取值范围。
(II)若在[1,]上为增函数,求a的取值范围。
题型:不详难度:| 查看答案
已知函数 
(I) 解关于的不等式
(II)若函数的图象恒在函数的上方,求实数的取值范围。
题型:不详难度:| 查看答案
已知:,当时,
时,
(1)求的解析式
(2)c为何值时,的解集为R.
题型:不详难度:| 查看答案
定义域为的偶函数,对,有,且当 时,,若函数上至少有三个零点,则的取值范围是(   )
A.B.C.D.

题型:不详难度:| 查看答案
f(x)为定义在R上的奇函数,当时, (为常数),则(      )    
A.3B.1C.-1D.-3

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.