当前位置:高中试题 > 数学试题 > 函数的相关概念 > 设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.(1)求函数f(x)的表达式;(2)若方程f(x)=x+a(a∈R)至...
题目
题型:不详难度:来源:
设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.
答案
(1)f(x)=(2)
解析
(1)∵当且仅当x=-2时,函数f(x)取得最小值-2.
∴二次函数y=x2+bx+c的对称轴是x=-=-2.
且有f(-2)=(-2)2-2b+c=-2,即2b-c=6.
∴b=4,c=2.∴f(x)=
(2)记方程①:2=x+a(x>0),
方程②:x2+4x+2=x+a(x≤0).
分别研究方程①和方程②的根的情况:
(ⅰ)方程①有且仅有一个实数根a<2,方程①没有实数根a≥2.
(ⅱ)方程②有且仅有两个不相同的实数根,即方程x2+3x+2-a=0有两个不相同的非正实数根.∴-<a≤2;

方程②有且仅有一个实数根,即方程x2+3x+2-a=0有且仅有一个非正实数根.
∴2-a<0或Δ=0,即a>2或a=-.
综上可知,当方程f(x)=x+a(a∈R)有三个不相同的实数根时,-<a<2;
当方程f(x)=x+a(a∈R)有且仅有两个不相同的实数根时,a=-或a=2.
∴符合题意的实数a取值的集合为
核心考点
试题【设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.(1)求函数f(x)的表达式;(2)若方程f(x)=x+a(a∈R)至】;主要考察你对函数的相关概念等知识点的理解。[详细]
举一反三
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.
题型:不详难度:| 查看答案
设函数f(x)= (a<0)的定义域为D,若所有点(s,f(t))(s、t∈D)构成一个正方形区域,则a的值为________.
题型:不详难度:| 查看答案
已知函数,若,则的大小关系为___________.
题型:不详难度:| 查看答案
关于函数,有以下命题:①函数的图像关于轴对称;②当是增函数,当时,是减函数;③函数的最小值为;④当时,是增函数;⑤无最大值 ,也无最小值。其中正确的命题是:__________.
题型:不详难度:| 查看答案
已知函数
(1)若上存在零点,求实数的取值范围;
(2)当时,若对任意的,总存在使成立,求实数的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.