当前位置:高中试题 > 数学试题 > 柯西不等式 > (不等式选讲选做题)已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______....
题目
题型:惠州二模难度:来源:
(不等式选讲选做题)
已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.
答案
因为a2+b2=1,x2+y2=3,
由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得
3≥(ax+by)2,不且仅当ay=bx时取等号,
所以ax+by的最大值为


3

故答案为:


3
核心考点
试题【(不等式选讲选做题)已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为______.】;主要考察你对柯西不等式等知识点的理解。[详细]
举一反三
已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.
题型:深圳一模难度:| 查看答案
已知a,b,c∈R+,且a+b+c=1,求


3a+1
+


3b+1
+


3c+1
的最大值.
题型:不详难度:| 查看答案
设P是边长为2


3
的正△ABC内的一点,x,y,z是P到三角形三边的距离,则


x
+


y
+


z
的最大值为______.
题型:不详难度:| 查看答案
已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,则 k=______.
题型:不详难度:| 查看答案
已知a、b、c是实数,且a2+b2+c2=1,求2a+b+2c的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.