当前位置:高中试题 > 数学试题 > 常见曲线的参数方程 > 已知过原点的直线与圆x=-2+cosθy=sinθ(其中θ为参数)相切,若切点在第二象限,则该直线的方程为______....
题目
题型:东城区二模难度:来源:
已知过原点的直线与圆





x=-2+cosθ
y=sinθ
(其中θ为参数)相切,若切点在第二象限,则该直线的方程为______.
答案
∵圆





x=-2+cosθ
y=sinθ
(其中θ为参数)相切,
∴(x+2)2+y2=1,圆心为(-2,0),半径r=1,
∵过原点的直线可设y=kx,
∵过原点的直线与圆





x=-2+cosθ
y=sinθ
(其中θ为参数)相切,
∴1=
|-2k|


1+ k2

∴k=±


3
3
,∵切点在第二象限,
∴k=-


3
3

∴y=-


3
3
x,
故答案为:y=-


3
3
x.
核心考点
试题【已知过原点的直线与圆x=-2+cosθy=sinθ(其中θ为参数)相切,若切点在第二象限,则该直线的方程为______.】;主要考察你对常见曲线的参数方程等知识点的理解。[详细]
举一反三
在极坐标系中,圆C1的方程为ρ=4


2
cos(θ-
π
4
),以极点为坐标原点,极轴为x轴的正半轴建立平面坐标系,圆C2的参数方程





x=-1+αcosθ
y=-1+αsinθ
(θ为参数),若圆C1与C2相切,则实数a=______.
题型:不详难度:| 查看答案
选修4-4:坐标系与参数方程
平面直角坐标系xOy中,点A(2,0)在曲线C1





x=acosφ
y=sinφ
,(a>0,φ为参数)上.以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为:ρ=acosθ
(Ⅰ)求曲线C2的普通方程
(Ⅱ)已知点M,N的极坐标分别为(ρ1,θ),(ρ2,θ+
π
2
),若点M,N都在曲线C1上,求
1
ρ21
+
1
ρ22
的值.
题型:不详难度:| 查看答案
给定两个长度为1的平面向量 ,它们的夹角为90°,如图所示,点C在以O为圆心的圆弧AB上运动,若  ,其中x,y∈R,则x+y的最大值是(   )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.1B.C.D.2
已知圆心为C的圆经过点(1,1)和(2,-2),且圆心C在直线l:x-y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)已知点A是圆心为C的圆上动点,B(2,1),求|AB|的取值范围.
选修4-4:坐标系与参数方程
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+
π
4
)=


2
2
a,曲线C2的参数方程为





x=-1+cosφ
x=-1+sinφ
(φ为参数,0≤φ≤π),
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个不同公共点时,求实数a的取值范围.